
Project Idea
A Jenkins plugin to wrap the https://github.com/cdancy/bitbucket-rest library, allowing Pipeline scripts to
interact easily with Bitbucket instances via the Bitbucket REST API, and eliminating the need to parse
responses, making pipeline scripts more concise.

As explained in the mailing list, it is essential for build steps to return only simple data types, like string,
integers, lists of simple data types, maps of simple data types. Steps cannot return methods, nor objects with
behaviors. Also, using the GlobalVariable is not recommended, however it might be inevitable. The student is
expected to study the use of GlobalVariable in plugins that use it and ask for guidance on the Pipeline
Authoring SIG gitter chat on this matter. The student should study the docker pipeline plugin source code and
the pipeline loader plugin to understand .

In the following, we show how the finished plugin would look like from the user point of view in a Jenkins
Pipeline DSL program. This is not a specification, it is only an example. The student is expected to study the
the bitbucket-rest library, the Jenkins Plugin tutorials and the Scripted Pipeline syntax, and propose a proper
Jenkins Pipeline DSL syntax for this project.

Examples
To create a bitbucket client use the bitbucketClient step:
def bbClient = bitbucketClient url: “bburl”, username: “user”, password: “secret”

You can use a Bitbucket Personal Token (bearer):
def bbClient = bitbucketClient url: “url”, token: “secret”

The Bitbucket-rest client can set a verbosity level (see this wiki for a groovy example of the underlying
implementation of the logger framework supporting the verbosity):
bbClient.verbosity = “level”

The Bitbucket-rest client can set System properties to configure the underlying JClouds library:
bbClient.setProperty("jclouds.so-timeout", "60000")

To query a pull-request, use the bitbucket pull-request step:
def resp = bitbucketPullRequest client: bbClient, prNumber: 4, project: “BBPROJ”, repo: “GIT_REPO”

The response is automatically parsed and the user can simply read the properties:
echo resp.errors

echo resp.errors[0].context

echo resp.errors[0].message

echo resp.fromRef

echo resp.toRef

echo resp. … (etc.)

Alternatively, it has been proposed that the REST API could be generalized:
restApiClient.withServer(url: “foo://bitbucket”, project: project, repo: repo, credentialsId: “mybitbucket”)

{

def response = restApiClient.get “api/pullRequests/changes”

https://github.com/cdancy/bitbucket-rest
https://groups.google.com/forum/#!topic/jenkinsci-dev/x-EbjnWcFqs
https://javadoc.jenkins.io/plugin/workflow-cps/org/jenkinsci/plugins/workflow/cps/GlobalVariable.html
https://github.com/jenkinsci/docker-workflow-plugin
https://github.com/jenkinsci/workflow-remote-loader-plugin
https://github.com/cdancy/bitbucket-rest
https://github.com/cdancy/bitbucket-rest/wiki/Logging


echo response.commits[0].message

}

Expectations
The student is expected to come up with a prototype to demonstrate the capability of the plugin, for example by
implementing a single REST API method and a single response type, before proceeding with a complete
implementation. This will help the student create proper step method calls and proper response objects.

Many interactions with a Bitbucket server are possible, see the full Javadoc for the Bitbucket REST library.
Having low level access to the Bitbucket REST API allows users to interact with Bitbucket in ways that are not
provided by existing higher level plugins.

Advanced concept: it would be interesting to generate this plugin automatically simply by reading the
bitbucket-rest library. This would enable automatic updates to this project each time the underlying library is
updated, and it would also enable the automatic maintenance of the Jenkins-rest plugin and the Artifactory-rest
plugin. This could be done with OpenAPI (Swagger).

Quick start
There are many technologies to use together to form this plugin. The student who wishes to get started will
need to:

● study plugin tutorials on how to write a Pipeline Step plugin
○ Tutorials listed on the student information page
○ Writing Pipeline compatible plugins
○ Writing Pipeline steps
○ Updating plugin for Pipeline
○ looking at existing pipeline compatible plugins will be very useful. Example:

■ External Workspace Manager (look at the steps folder, the steps themselves, and their
execution classes)

● study the bitbucket-rest library, try the examples in the wiki
● create a basic custom pipeline compatible plugin and load it in Jenkins (see the plugin tutorials)

Links
● https://github.com/cdancy/artifactory-rest
● https://github.com/cdancy/jenkins-rest
● https://github.com/cdancy/bitbucket-rest
● Discussion on returning simple data from pipeline steps.
● Example of a response content supplier for a Jenkins Pipeline Step
● OpenAPI (Swagger)

http://cdancy.github.io/bitbucket-rest/docs/javadoc/
https://docs.google.com/document/d/1Xz3I02T-QxlJW-1nt_CofF2I6se3hztF9ZsHqxu55nU
https://docs.google.com/document/d/1nZcgQuSLvNM-xhYLD60Q1MxPtCIpl5iUd3VOsSXUIis
https://docs.google.com/document/d/1nZcgQuSLvNM-xhYLD60Q1MxPtCIpl5iUd3VOsSXUIis
https://swagger.io/docs/specification/about/
https://jenkins.io/projects/gsoc/students/#UsefulLinks
https://jenkins.io/doc/developer/plugin-development/pipeline-integration/
https://github.com/jenkinsci/workflow-step-api-plugin/blob/master/README.md
https://jenkins.io/blog/2016/05/25/update-plugin-for-pipeline/
https://github.com/jenkinsci/external-workspace-manager-plugin/
https://github.com/jenkinsci/external-workspace-manager-plugin/tree/master/src/main/java/org/jenkinsci/plugins/ewm/steps
https://github.com/cdancy/bitbucket-rest
https://github.com/cdancy/bitbucket-rest/wiki
https://github.com/cdancy/artifactory-rest
https://github.com/cdancy/jenkins-rest
https://github.com/cdancy/bitbucket-rest
https://groups.google.com/forum/#!topic/jenkinsci-dev/x-EbjnWcFqs
https://github.com/jenkinsci/http-request-plugin/blob/master/src/main/java/jenkins/plugins/http_request/ResponseContentSupplier.java
https://swagger.io/docs/specification/about/


Open questions

GlobalVariables have been debated on the mailing list, and their use is controversial. However they do work.
Example of global variables usage in working plugins: docker, pipeline loader plugin.

Skills to improve/study
● Java
● REST API
● Bitbucket
● Jenkins Pipeline

https://javadoc.jenkins.io/plugin/workflow-cps/org/jenkinsci/plugins/workflow/cps/GlobalVariable.html
https://groups.google.com/forum/#!topic/jenkinsci-dev/x-EbjnWcFqs
https://github.com/jenkinsci/docker-workflow-plugin
https://github.com/jenkinsci/workflow-remote-loader-plugin

